
Pairwise Overview 2

 Test Case Generation 3

 Example Criteria Files 4

 END USER LICENSE AGREEMENT 8

 Using Excel 10

 Installing Pairwise 11

 A Pairwise Example in Practice 12

 Example Run Scenarios 16

 Configuration Files 17

 Messages 22

 Resolving Input File Issues 26

 Effective Test Data Selection 29

2

Pairwise Overview

Pairwise is a testing technique used to maximize test coverage while minimizing test cases. Since testing all possible combinations of input

parameters would require a Cartesian product of tests, it isn’t reasonable, if even possible, to do. Instead, but why when you have pairwise?

Most defects trigger with either a single input parameter or an interaction between pairs of parameters. So, testing all possible combinations

of all pairs of input parameters can only be done by using a Cartesian product of tests, but why when you have pairwise?

Pairwise makes it possible to save time and money by significantly reducing the number of tests needed to test.

To make it more useful, AnkrPt Pairwise not only generates all possible pairs of input parameters, it also lets you define required tests,

negative criteria, and constraints to achieve a well-designed and complete test suite.

Pairwise testing should be an integral part of every test plan, making testing more effective with fewer tests thus reducing test estimates. In

addition, data test sets created with Pairwise can be reused or easily modified during development which needs retesting.

Process Overview

Pairwise process diagram:

3

4

Example Criteria Files

The following samples are for illustration purposes and show Criteria, Negative Tests, Required Tests, and Constraints. Use these as a

starting point when desired.

Buy-sell (criteria)

Buy-sell (with negative criteria)

Buy-sell (with required tests)

In the examples that blank lines are ignored, and spaces before and after values are also ignored.

Duplicating values in the same criteria is not allowed so blank characters do not make them distinct. But mixing case does make

values distinct.

This is a basic buy-sell pairwise generation example found in many places on the internet. We used this as the basis to learn pairwise

and validate our process.

1 CRITERIA

2 Sale, Buy, Sell

3 City, Austin, Gdansk

4 Status, New, Used

5 Vehicle, BMW, Audi, Mercedes

6 Color, Red, Blue

7 Hours, Working, Non-working

This is simple negative criteria. One negative test will be produced for each negative criteria.

1 CRITERIA

2 Sale ,Buy ,Sell

3 City ,Austin ,Gdansk

4 Status ,New ,Used

5 Vehicle ,BMW ,Audi ,Mercedes

6 Color ,Red ,Blue

7 Hours ,Working,Non-working

8

9 NEGATIVE CRITERIA

10 Sale ,Trade

11 Vehicle ,Lada

12 Color ,Yellow

Required tests allow you to create specific conditions beyond pairs to be tested. These are always the first tests generated to use the

specified pairs, and to allow you to easily confirm they’re generated.

Test 4 does not provide all values. In these cases, the missing values will be filled in from the list of valid values.

1 CRITERIA

2 Sale ,Buy ,Sell

3 City ,Austin ,Gdansk

4 Status ,New ,Used

5 Vehicle ,BMW ,Audi ,Mercedes

6 Color ,Red ,Blue

7 Hours ,Working,Non-working

8

5

Buy-sell (with constraints)

Buy-sell (with all sections)

Web site (criteria, required tests, constraints)

9 REQUIRED TESTS

10 ID ,Sale ,City ,Status ,Vehicle,Color,Hours

11 1 ,Buy ,Austin ,Used ,Audi ,Blue ,Non-working

12 2 ,Buy ,Gdansk ,Used ,Audi ,Blue ,Working

13 3 ,Sell ,Gdansk ,New ,Audi ,Red ,Working

14 4 , ,Gdansk , ,BMW ,Red

Constraints are the basis of limiting value combinations, they are critical in generating useful tests.

1 CRITERIA

2 Sale ,Buy ,Sell

3 City ,Austin ,Gdansk

4 Status ,New ,Used

5 Vehicle ,BMW ,Audi ,Mercedes

6 Color ,Red ,Blue

7 Hours ,Working,Non-working

8

9 CONSTRAINTS

10 When ,Vehicle,is ,BMW

11 And ,City ,is ,Austin

12 Then ,Color ,isNot ,Red

This simple puts all the sections into a single file. Note that blank lines allow for section separation without impacting the generation

process.

1 CRITERIA

2 Sale ,Buy ,Sell

3 City ,Austin ,Gdansk

4 Status ,New ,Used

5 Vehicle ,BMW ,Audi ,Mercedes

6 Color ,Red ,Blue

7 Hours ,Working,Non-working

8

9 NEGATIVE CRITERIA

10 Sale ,Trade

11 Vehicle ,Lada

12 Color ,Yellow

13

14 REQUIRED TESTS

15 ID ,Sale ,City ,Status ,Vehicle,Color,Hours

16 1 ,Buy ,Austin ,Used ,Audi ,Blue ,Non-working

17 2 ,Buy ,Gdansk ,Used ,Audi ,Blue ,Working

18 3 ,Sell ,Gdansk ,New ,Audi ,Red ,Working

19 4 , ,Gdansk , ,BMW ,Red

20

21 CONSTRAINTS

22 When ,Vehicle,is ,BMW

23 And ,City ,is ,Austin

24 Then ,Color ,isNot ,Red

1 CRITERIA

2 Device, Mobile, Desktop

3 Desktop Browser, Chrome, Firefox, Internet Explorer, Opera, Safari, n/a

6

4 Mobile Browser, Chrome, Android, Opera, Safari, n/a

5 Desktop Connection, wifi, cable, n/a

6 Mobile Connection, edge, 4g, wifi, n/a

7 Desktop OS, Windows, Linux, Mac, n/a

8 Mobile OS, iOS, Android, n/a

9 IP Version, IPv4, IPv6

10 Protocol, http, https

11 www in front, yes, no

12 Cookies, enabled, disabled

13 Window Dimension, wide, tall

14 Window Size, large, small

15 Language, english, non-english

16 Server Caching, on, off

17 Server Minification, on, off

18

19 REQUIRED TEST

20 ID, Desktop, Desktop Browser, Mobile Browser, Desctop Connection, Mobile Connection, Desktop OS, Mobile OS,

IP Version, Protocol, WWW in front, Cookies, Window Dimension, Window Size, Language, Server Caching,

Server Minification

21 Desktop, Desktop, Chrome, n/a, cable, n/a, Windows, n/a, IPv4, https, no, enabled, wide, large, english,

on, off

22 Mobile, Mobile, n/a, Chrome, n/a, wifi, n/a, Android, IPv4, https, no, enabled, tall, small, english, on,

off

23

24 CONSTRAINT

25 When, Device, IS, Mobile

26 Then, Mobile Browser, ISNOT, n/a

27 And, Mobile Connection, ISNOT, n/a

28 And, Mobile OS, ISNOT, n/a

29 And, Desktop Browser, IS, n/a

30 And, Desktop Connection, IS, n/a

31 And, Desktop OS, IS, n/a

32

33 When, Device, IS, Desktop

34 Then, Desktop Browser, ISNOT, n/a

35 And, Desktop Connection, ISNOT, n/a

36 And, Desktop OS, ISNOT, n/a

37 And, Mobile Browser, IS, n/a

38 And, Mobile Connection, IS, n/a

39 And, Mobile OS, IS, n/a

40

41 When, Desktop Browser, ISNOT, n/a

42 Or, Desktop Connection, ISNOT, n/a

43 Or, Desktop OS, ISNOT, n/a

44 Then, Mobile Browser, IS, n/a

45 And, Mobile Connection, IS, n/a

46 And, Mobile OS, IS, n/a

47

48 When, Mobile Browser, IS, Android

49 Then, Mobile OS, IS, Android

50

51 When, Desktop Browser, IS, Internet Explorer

52 Then, Desktop OS, IS, Windows

53

54 When, Mobile OS, ISNOT, n/a

55 Then, Desktop OS, IS, n/a

56

57 When, Mobile Browser, ISNOT, n/a

7

6x6 criteria only

58 Then, Desktop Browser, IS, n/a

59

60 When, Mobile Connection, ISNOT, n/a

61 Then, Desktop Connection, IS, n/a

62

63 When, Device, IS, Mobile

64 Then, Window Size, IS, small

This example is a basic alphabetic/number square to easily see and understand the results of generation. As with any criteria value,

simply replacing one value with another doesn’t impact the generation process.

1 CRITERIA

2 a,a1,a2,a3,a4,a5,a6

3 b,b1,b2,b3,b4,b5,b6

4 c,c1,c2,c3,c4,c5,c6

5 d,d1,d2,d3,d4,d5,d6

6 e,e1,e2,e3,e4,e5,e6

7 f,f1,f2,f3,f4,f5,f6

8

END USER LICENSE AGREEMENT

Acceptance

License Grant

Consent to Use of Data

Termination

Disclaimer of Warranties and Limitation of Liability

Governing Law, Jurisdiction and Costs

Severability

This copy of software ("the Software Product") and accompanying documentation is licensed and not sold. This Software Product is

protected by copyright laws and treaties, as well as laws and treaties related to other forms of intellectual property. Kimputing, Inc. or its

subsidiaries, affiliates, and suppliers (collectively "Licensor") own intellectual property rights in the Software Product. The Licensee’s ("you"

or "your") license to download, use, copy, or change the Software Product is subject to these rights and to all the terms and conditions of

this End User License Agreement ("Agreement").

Acceptance

YOU ACCEPT AND AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT BY DOWNLOADING THE SOFTWARE PRODUCT

OR BY INSTALLING, USING, OR COPYING THE SOFTWARE PRODUCT. IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS

AGREEMENT, YOU MUST NOT INSTALL, USE, OR COPY THE SOFTWARE PRODUCT.

License Grant

This Agreement entitles you to a non-transferable license to use the Licensed Application as designed. You may not assign your rights and

obligations under this Agreement, or redistribute, encumber, sell, rent, lease, sublicense, or otherwise transfer your rights to the Software

Product. You will make no effort to decompile, "reverse-engineer", disassemble, or otherwise attempt to derive the source code for the

Software Product. You may not modify the Software Product or create any derivative work of the Software Product or its accompanying

documentation. Derivative works include but are not limited to translations. You may not alter any files or libraries in any portion of the

Software Product.

Consent to Use of Data

You agree that Licensor may collect and use technical data and related information, including but not limited to technical information about

your device and system, that is gathered periodically to facilitate the provision of the software updates, product support and other services

related to the Software Product. Licensor may use this information as long as it is in a form that does not personally identify you, to improve

or market its products, services or technologies.

Termination

This EULA is effective until terminated by you or Licensor. Your rights under this EULA will terminate automatically if you fail to comply with

any of its terms.

9

Disclaimer of Warranties and Limitation of Liability

YOU EXPRESSLY ACKNOWLEDGE AND AGREE THAT USE OF THE SOFTWARE PRODUCT IS AT YOUR SOLE RISK AND THAT THE

SOFTWARE PRODUCT IS PROVIDED “AS IS,” WITH ALL FAULTS AND WITHOUT WARRANTY OF ANY KIND. LICENSOR MAKES NO

WARRANTIES, EXPRESS OR IMPLIED, IN FACT OR IN LAW, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OTHER THAN AS SET FORTH IN THIS AGREEMENT. LICENSOR

MAKES NO WARRANTY THAT THE SOFTWARE PRODUCT WILL MEET YOUR REQUIREMENTS OR OPERATE UNDER YOUR

SPECIFIC CONDITIONS OF USE.

YOU MUST DETERMINE WHETHER THE SOFTWARE PRODUCT SUFFICIENTLY MEETS YOUR REQUIREMENTS FOR SECURITY

AND UNINTERRUPTABILITY. YOU BEAR SOLE RESPONSIBILITY AND ALL LIABILITY FOR ANY LOSS INCURRED DUE TO FAILURE

OF THE SOFTWARE PRODUCT TO MEET YOUR REQUIREMENTS. LICENSOR WILL NOT, UNDER ANY CIRCUMSTANCES, BE

RESPONSIBLE OR LIABLE FOR THE LOSS OF DATA ON ANY COMPUTER OR INFORMATION STORAGE DEVICE.

UNDER NO CIRCUMSTANCES SHALL LICENSOR, ITS DIRECTORS, OFFICERS, EMPLOYEES OR AGENTS BE LIABLE TO YOU OR

ANY OTHER PARTY FOR INDIRECT, CONSEQUENTIAL, SPECIAL, INCIDENTAL, PUNITIVE, OR EXEMPLARY DAMAGES OF ANY

KIND (INCLUDING LOST REVENUES OR PROFITS OR LOSS OF BUSINESS) RESULTING FROM THIS AGREEMENT, OR FROM THE

FURNISHING, PERFORMANCE, INSTALLATION, OR USE OF THE SOFTWARE PRODUCT, WHETHER DUE TO A BREACH OF

CONTRACT, BREACH OF WARRANTY, OR THE NEGLIGENCE OF LICENSOR OR ANY OTHER PARTY, EVEN IF LICENSOR IS

ADVISED BEFOREHAND OF THE POSSIBILITY OF SUCH DAMAGES.

TO THE EXTENT THAT THE APPLICABLE JURISDICTION LIMITS LICENSOR’S ABILITY TO DISCLAIM ANY IMPLIED WARRANTIES,

THIS DISCLAIMER SHALL BE EFFECTIVE TO THE MAXIMUM EXTENT PERMITTED. IN NO EVENT SHALL LICENSOR’S TOTAL

LIABILITY TO YOU FOR ALL DAMAGES EXCEED THE UNUSED PORTION OF THE AMOUNT PAID FOR THE LICENSE.

Governing Law, Jurisdiction and Costs

This Agreement is governed by the laws of Texas, without regard to Texas’s conflict or choice of law provisions. If you are not a U.S. citizen

or do not reside in the U.S., you hereby agree that any dispute or claim arising from this Agreement shall be governed by the applicable

laws identified above and you herby irrevocably submit to the non-exclusive jurisdiction of the courts located in the jurisdiction identified

above.

Severability

If any provision of this Agreement shall be held to be invalid or unenforceable, the remainder of this Agreement shall remain in full force and

effect. To the extent any express or implied restrictions are not permitted by applicable laws, these express or implied restrictions shall

remain in force and effect to the maximum extent permitted by such applicable laws.

10

Using Excel

Excel is a common tool used to view and edit .csv (comma-separated values) files. However, there are some things you need to consider

when doing this.

Excel may not properly handle the delimiter, and you may need to define the delimiter yourself

Excel will pad all lines with multiple entries with enough commas to make the lines equal in length, this is especially apparent with the

Criteria and Negative Criteria sections

11

Installing Pairwise

The following steps are required in properly install AnkrPt Pairwise. Feel free to skip those already completed.

1. Install JDK 11 or higher

2. Download the jar file from Pairwise

Pairwise is ready to launch!

[Optional] Installing JavaFX on macOS:
1. Go to https://gluonhq.com/products/javafx/ and download JavaFX Mac OS X SDK.

2. Navigate to Downloads and unzip the file by double-clicking on it.

3. In your terminal, run the following command:

1. Run Pairwise in terminal with the following command:

[Optional] Installing JavaFX on Ubuntu (18.04 or newer):
1. Open a command line.

2. Type apt install openjfx to get the package. It is installed to /usr/share/openjfx/lib.

3. In terminal, run the following command:

1. Run Pairwise in terminal with the following command:

If you face troubles running GUI on macOS or Ubuntu install JavaFX manually.

For java JDK installation refer to:

installation for Windows,

installation for macOS.

1 export PATH_TO_FX="[path-to-unziped-javafx]/javafx-sdk-[verion]/lib"

1 java --module-path $PATH_TO_FX --add-modules javafx.controls,javafx.fxml,javafx.swing -jar pairwise-

1.00.RELEASE.jar

You will need to do export PATH_TO_FIX step each time you’ll run terminal as variable does not carry over between terminal

windows.

1 export PATH_TO_FX="/usr/share/openjfx/lib"

1 java --module-path $PATH_TO_FX --add-modules javafx.controls,javafx.fxml,javafx.swing -jar pairwise-

1.00.RELEASE.jar

You will need to do export PATH_TO_FIX step each time you’ll run terminal as variable does not carry over between terminal

windows.

https://www.oracle.com/java/technologies/javase/jdk11-archive-downloads.html
https://www.kimputing.com/pairwise/
https://gluonhq.com/products/javafx/
https://docs.oracle.com/javase/10/install/installation-jdk-and-jre-microsoft-windows-platforms.htm#JSJIG-GUID-96EB3876-8C7A-4A25-9F3A-A2983FEC016A
https://docs.oracle.com/javase/10/install/installation-jdk-and-jre-macos.htm#JSJIG-GUID-7EB4F697-F3D1-40EA-ACDF-07FA90F02D57

12

Challenge:
Testing part of application that helps people to set medical appointments. Apart from appointments in proper facility people may get advice by phone, home-visit or get
general advice for certain group of symptoms.

Task:
Creation of Test suite that will cover all paths for indicated system.

Steps required to achieve the goal and conclusions:
1. Analyze input data.

After deep analysis of possible input values, data set was limited to the values that provide various path coverages for tested application. Values were chosen
to be the best representatives of data that interacts with each other, and to discover defects that may have critical impact on the tested system.

2. Provide data for AnkrPt Pairwise and combinatorial testing.

We created input categories with indicated positive values:

Assumptions:

For provided data we expect to have full coverage of the system. We can try testing all combinations of given values (getting 324 test cases = 3*3*4*3*3 -
Cartesian Count) or try to use a shortcut to achieve it with Pairwise, making test case numbers significantly less.

Observations:

Pairwise by AnkrPt generates a Test Suite for this input data set containing 16 test cases, that are composed of 102 simple all-pairs of given values:

Person MD Purpose Symptoms Visit Type

1 child under 2 pediatrician prescription fever phone

2 child dermatologist control check runny nose home-visit

3 child pediatrician infection rash & fever phone

4 adult dermatologist control check runny nose phone

5 child under 2 dermatologist infection rash emergency

6 child under 2 internist prescription rash & fever phone

7 adult pediatrician control check rash phone

8 adult internist infection fever home-visit

9 child under 2 internist control check rash & fever home-visit

10 child under 2 pediatrician prescription runny nose phone

11 adult pediatrician control check fever emergency

12 child internist prescription rash home-visit

13 child dermatologist control check fever emergency

14 child pediatrician infection rash home-visit

15 adult dermatologist prescription rash & fever emergency

16 adult internist infection runny nose emergency

Conclusions:

We can see that some pairs of values appear more than once, but this is inevitable, as covering test cases requires return values exactly fulfilling indicated path
(to cover minimum amount of test cases with all pairs indicates creating cases where some parameters can have any value from given positive set of data).

Comparing testing all combinations of values to Pairwise numbers makes a huge difference between 324 and 16 test cases.
3. Provide data for AnkrPt Pairwise to mitigate risks connected with Pairwise technique.

Assumptions:

A Pairwise Example in Practice

CRITERIA NAME VALUES

Person child, adult, child under 2,

MD pediatrician, internist, dermatologist,

Purpose control check, prescription, infection,

Symptoms fever, rash & fever, rash, runny nose,

Visit Type phone, home-visit, emergency,

13

It is known that pairwise technique fails when highly probable or high-impact input value combinations get too little attention. To mitigate those risks we use
Required Tests, to assure that those combinations are included in generated Test Suite.

We define required tests for given example (empty values stand for "any valid value"):

Table 1. Test Suite containing Pairwise Test Cases

ID Person MD Purpose Symptoms Visit Type

1 dermatologist prescription rash phone

2 child pediatrician home-visit

3 child under 2 rash & fever emergency

Observations:

Another run of Pairwise and we get brand new, polished Test Suite composed of 15 test cases, that includes high-risk / highly probable value combinations:

Table 2. Test Suite containing Required Tests as a Pairwise Test Cases

Person MD Purpose Symptoms Visit Type

1 child under 2 internist control check rash emergency

2 adult pediatrician control check rash & fever home-visit

3 adult dermatologist infection runny nose home-visit

4 adult internist control check rash emergency

5 child under 2 pediatrician prescription fever home-visit

6 child under 2 pediatrician prescription fever phone

7 child internist prescription rash & fever phone

8 child dermatologist infection rash phone

9 adult dermatologist prescription rash phone

10 adult internist infection fever home-visit

11 child pediatrician infection rash home-visit

12 child internist control check runny nose phone

13 child under 2 dermatologist infection rash & fever emergency

14 child under 2 pediatrician prescription runny nose emergency

15 child dermatologist control check fever emergency

Conclusions:

Adding required test to the suite does not mean that number of test cases will increase.

Pairwise processes them at the beginning of the test case optimization, so they have impact on the process. There are situations where number of test cases
may be smaller with required test than without them and this is proper behavior, as Pairwise will give you the best test suite with given input, and it may
happen that required test will be better fit for further test generation.

4. Don’t forget about negative testing!
Assumptions:

As we’ve got complete Test Suite covering "happy paths" for the application it is needed to provide tests covering negative values.

We provide negative values that should be included in Test Suite:

#Observations:

After another run of Pairwise we have completed Test suite composed with 15 "happy path" test cases (including required ones) and 8 negative test cases.

Table 3. Test Suite containing Required Tests

Person MD Purpose Symptoms Visit Type <INVALID>

1 child under 2 internist control check rash emergency

2 child under 2 internist control check rash chat Visit Type

3 adult internist control check rash emergency

4 child under 2 pediatrician prescription runny nose emergency

5 child internist prescription rash & fever phone

CRITERIA NAME VALUES

Person elder,

MD nurse, surgeon,

Symptoms none, pain,

Visit Type chat, none,

Purpose giving birth,

14

Person MD Purpose Symptoms Visit Type <INVALID>

6 adult dermatologist prescription rash phone

7 adult surgeon prescription runny nose home-visit MD

8 child under 2 nurse infection rash & fever emergency MD

9 elder pediatrician control check rash phone Person

10 child dermatologist control check fever emergency

11 child dermatologist giving birth fever phone Purpose

12 child dermatologist infection rash phone

13 adult pediatrician control check rash & fever home-visit

14 adult dermatologist infection runny nose home-visit

15 adult internist infection fever home-visit

16 child internist prescription pain home-visit Symptoms

17 child internist control check runny nose phone

18 child under 2 dermatologist infection rash & fever emergency

19 adult pediatrician infection rash & fever none Visit Type

20 child pediatrician infection rash home-visit

21 adult dermatologist infection none emergency Symptoms

22 child under 2 pediatrician prescription fever phone

23 child under 2 pediatrician prescription fever home-visit

AnkrPt PairWise Processing for "c:\tmp\test.csv"

Columns - 5
 Largest - 4
 Smallest - 3

Valid Values - 16
Negative Values - 8
Total Pairs - 102
Cartesian Count - 324

Total Tests - 15
 Required - 3 (*** included in total tests)
 Negative - 8 (*** not included in total tests)

Test data results saved to 'c:\tmp\test-output.csv'

Conclusions:

AnkrPt Pairwise is giving you Test Suite containing 15 positive test cases and 8 negative, to cover all system paths, highly probable and high-risk value
combinations to give you opportunity to discover most defects that might occur during complex combinatorial testing.

5. Improve your Test Suite with CONSTRAINTS!
We provide constraints for our Test Suite: We know that child and child under 2 should be always treated by pediatrician, and rash as well as rash
and fever should be treated by dermatologist or pediatrician(as it may be children issue).

When Person isIn child,child under 2

Then MD is pediatrician

When Symptoms isIn rash & fever,rash

Then MD isIn dermatologist,pediatrician

During test generation, we get information, about pairs that were eliminated with Constraints:

AnkrPt PairWise Processing for "c:\tmp\test.csv"

Columns - 5
 Largest - 4
 Smallest - 3

Valid Values - 16
Negative Values - 8
Total Pairs - 96
Cartesian Count - 324

Total Tests - 17

15

 Required - 3 (*** included in total tests)
 Negative - 8 (*** not included in total tests)
Generated in - 55 ms

Pairs filtered by constraints:
0-child <> 1-dermatologist
0-child <> 1-internist
0-child under 2 <> 1-dermatologist
0-child under 2 <> 1-internist
3-rash & fever <> 1-internist
3-rash <> 1-internist

Test data results saved to 'c:\tmp\test-output.csv'

Person MD Purpose Symptoms Visit Type <INVALID>

1 adult internist prescription fever home-visit

2 adult dermatologist control check fever chat Visit Type

3 adult nurse control check fever emergency MD

4 child under 2 pediatrician prescription rash & fever emergency

5 adult dermatologist prescription rash phone

6 child under 2 pediatrician control check rash home-visit

7 child under 2 pediatrician infection fever phone

8 child pediatrician control check rash & fever home-visit

9 adult dermatologist giving birth fever emergency Purpose

10 child pediatrician infection rash emergency

11 adult surgeon control check fever emergency MD

12 adult internist control check runny nose emergency

13 adult internist infection runny nose phone

14 child pediatrician control check rash & fever phone

15 adult pediatrician control check rash emergency

16 adult dermatologist control check none emergency Symptoms

17 adult dermatologist prescription runny nose home-visit

18 adult dermatologist control check fever none Visit Type

19 child pediatrician prescription fever phone

20 child under 2 pediatrician control check runny nose emergency

21 adult dermatologist control check fever emergency

22 child pediatrician infection runny nose home-visit

23 adult dermatologist control check pain emergency Symptoms

24 elder dermatologist control check fever emergency Person

25 adult dermatologist infection rash & fever phone

Conclusions:

After another run of Pairwise we have completed Test suite composed with 17 "happy path" test cases (including required ones and constraints) and 8 negative
ones, but those are more suited for our needs(as we can see, required test changed to meet constraints conditions).

6. CONCLUSIONS:
Summing up, AnkrPt Pairwise is a very handy tool that will make your work much easier. Even with complex Test Suite composed of positive, negative
criteria, required test and constrains you will get significantly less test cases than with all value combinations (17 "happy path" cases and 8 negative ones, with
constraints to 324 Cartesian Count that do not even cover negative cases).

Pairwise require some time in preparing the data, constraints and requirements, as well as understanding the business processes. Testing planing with AnkrPt
Pairwise is less time and budget consuming, easier to estimate, and easier to manage with application updates (once you have created your initial set, you
can easily update as changes occur).

Remember that numbers before criteria values stands for criteria index (order criteria were defined in Criteria section) to make it easier to identify
them.

16

Example Run Scenarios

All examples assume the jar is at "c:\pairwise\pairwise.jar" and your source folder at "c:\tests\pairwise". Examples also assume the

output file already exists and identifies the scenario when renaming occurs.

Example from source without output

This example assumes you are currently in the source folder at c:\tests\pairwise\. If the output file exists during generation, "_output-99"

will be added to the output filename

Example from source with relative folder

This example assumes you are currently in the source folder at c:\tests\pairwise\.

Example from source with explicit file

This example assumes you are currently in the source folder at c:\tests\pairwise\.

Example from runtime with all options

java -jar c:\pairwise\pairwise.jar abc.csv

reads from c:\tests\pairwise\abc.csv

saves to c:\tests\pairwise\abc-output.csv.

or saves to c:\tests\pairwise\abc-output.csv after renaming existing to c:\tmp\pairwise\abc-output (copy 12).csv

java -jar c:\pairwise\pairwise.jar abc.csv output

reads from c:\tmp\pairwise\abc.csv

saves to c:\tmp\pairwise\output\abc.csv

or saves to c:\tests\pairwise\abc.csv after renaming existing to c:\tmp\pairwise\abc (copy 12).csv

java -jar c:\pairwise\pairwise.jar c:\work\abc.csv output\output.csv

reads from c:\tests\abc.csv

saves to c:\tests\output\output.csv and overwrites if it already exists

java -jar pairwise.jar c:\tests\pairwise\abc.csv output -delimiter="|" -charset="ISO-8559-1"

reads from c:\tests\pairwise\abc.csv which had to be absolute pathed

saves to c:\tests\pairwise\output\abc.csv

if it already exists, saves to c:\tests\pairwise\output\abc (copy 1).csv

17

Configuration Files

Sections

Basic Rules

Criteria

Negative Criteria

Required Tests

Constraints
Keywords

Putting it All Together

AnkrPt Pairwise uses simple csv files to define how tests generate. These files contain up to four (4) different sections as described below.

Sections

Basic Rules

There are some basic rules when editing your csv (comma-separated values) files:

section keywords are uppercase and define the beginning of each section,

each section can only occur once,

section order is vital as each section builds upon previous ones,

only the CRITERIA section is required; all others are optional,

all values must be separated by a delimiter (regional defaults),

if you don’t want the regional delimiter, a runtime parameter lets you override it,

you can edit with Excel but must retain the csv structure; we do not support native Excel,

blank lines are ignored so can be used for readability.

Criteria

The Criteria section defines the valid data used to generate tests. The structure of the Criteria section is:

1. CRITERIA tag identifying the start of the Criteria section.

CRITERIA yes identifies the criteria used to generate tests

NEGATIVE CRITERIA no defines negative criteria used to generate

negative tests

REQUIRED TESTS no identifies specific tests to generate. All

fields need not be included.

CONSTRAINTS no define limitations to be enforced during test

generation

Section Required Description

1 CRITERIA <b class="conum">(1)

2 Name, value1, value 2, "value3", ... <b class="conum">(2)

18

2. a criteria entry with the criteria name followed by a list of valid criteria. The name is in blue below.

Let’s see an example of a CRITERIA section with valid criteria.

Figure 1. CRITERIA section example

This structure makes it easy to easily define your requirements while still allowing complex testing conditions. Some basic rules for Criteria

are:

The Criteria section starts with the CRITERIA tag.

There must be one, and only one, Criteria section.

Each criteria row defines the criteria name (in blue above) and corresponding valid values for that criteria.

At least two criteria are required.

Each criterion can only be defined once. If criteria are defined multiple times, you must merge them.

Each criterion must have at least two values with all values unique for a given criteria.

All names and values are automatically trimmed (removal of leading and trailing spaces).

To use the delimiter within values, use quotes as per normal csv processing.

Blank lines are ignored.

Negative Criteria

It is not enough to just do 'happy path' testing, you should do negative testing as well to ensure the system is stable even with harmful

parameters. AnkrPt Pairwise does this with NEGATIVE CRITERIA as follows:

1. NEGATIVE CRITERIA tag identifying the start of the Negative Criteria section

2. each row identifies the name of a valid criterion followed by a list of invalid values

Let’s see an example of a NEGATIVE CRITERIA section with invalid criteria.

Figure 2. Negative Criteria Example

It is similar to the CRITERIA section except for negative values, and you must refer to an existing criteria name from the CRITERIA section.

Some basic rules for Negative Criteria are:

The Negative Criteria section starts with the NEGATIVE CRITERIA tag.

There must be one, and only one, Negative Criteria section.

CRITERIA section example

Please refer to Using Excel for additional considerations for working with csv files in Excel.

1 NEGATIVE CRITERIA <b class="conum">(1)

2 Name, value1, value 2, "value3", ... <b class="conum">(2)

Negative Criteria Example

19

Each negative criteria defines a criteria name and corresponding negative values.

Each criterion must reference an existing valid criteria from the CRITERIA section.

You cannot define a negative value if it is already a valid value for that name.

Each negative criteria are optional.

All names and values are automatically trimmed (removal of leading and trailing spaces).

To use the delimiter within values, use quotes as per normal csv processing.

Blank lines are ignored.

Required Tests

Generating pairwise tests ensures all pairs are tested, but not necessarily a specific test that you need. Required tests are a quick and easy

to ensure a specific test case is produced. Let’s look at the structure.

1. REQUIRED TEST tag identifies the start of the Required Test section.

2. A label line making it easier to match your fields to the required value.

The first column is a "Test ID" column.

3. The id of the required test followed by values for each name.

Let’s see an example of the REQUIRED TEST section.

Figure 3. Required tests example

Required tests are a little different from the Criteria sections but refer to those sections for data. Some basic rules for Required Tests are:

refer to values defined in either the CRITERIA or NEGATIVE CRITERIA sections.

undefined criteria are filled with criteria values during generation.

at least three criteria are required otherwise you’re just doing pair generation which is already done.

Constraints

Constraints are an extremely important and powerful part of AnkrPt Pairwise. They let us define limits while building test cases, making it

possible to ensure proper tests. Constraints use the following structure:

By default, Pairwise generates as many negative test cases as there are negative values (one invalid value per Test Case). You can

change this to condense multiple negative tests into as few tests possible producing tests with multiple negative conditions on a

single row.

1 REQUIRED TEST <b class="conum">(1)

2 ID, Name1, Name2, Name3, Name4, Name5,... <b class="conum">(2)

3 1,value1,,,,value5,... <b class="conum">(3)

Required tests example

1 CONSTRAINTS <b class="conum">(1)

2 When [criteria] is/isIn/isNot/isNotIn [value] <b class="conum">(2)

3 And/Or [criteria] is/isIn/isNot/isNotIn [value] <b class="conum">(3)

4 Then [criteria] is/isIn/isNot/isNotIn [value] <b class="conum">(4)

5 And [criteria] is/isIn/isNot/isNotIn [value] <b class="conum">(5)

20

1. CONSTRAINTS tag identifying the start of a Constraints section.

2. When defines the beginning of a constraint

3. And and Or define additional criteria for the constraint

4. Then is the beginning of the Then section for its associated When

5. And defines additional Then criteria. Or is not allowed with Then.

Let’s see an example.

Figure 4. Constraints example

Some basic rules of the Constraints section are:

every constraint requires both a When and Then statement.

Or is not allowed with the Then clause.

And and Or follow basic programming logic with Or tested first followed by And.

Constraints are built with keywords, criteria, and values (including negative ones) based upon basic logical conditions using a "When this

Then that" structure.

Keywords

Table 1. Constraints keywords

THEN conditions should be based on explicit requirements.

WHEN and THEN are defined once per Constraint; usage of both is mandatory.

you must use defined criteria.

REQUIRED TESTS are less important than CONSTRAINTS - it is required to resolve conflict before test generation.

OR is not allowed to define multiple values for the same criteria, use isIn or isNotIn instead.

Constraints example

When defines the beginning of a Constraint

Then defines the beginning of the Then clause

And logic operator to And your criteria

Or logic operator to Or your criteria

Is lets you define a single value that the condition must match

IsIn defines multiple possible values that the Constraint must match

one of

IsNot defines a single value which the Constraint cannot be

IsNotIn defines a list of values which the Constraint cannot match any of

Keyword Description

21

Putting it All Together

Now let’s put everything together to see a complete sample Criteria csv file.

Figure 5. Putting it all together

Download example as a CSV file

It’s essential to use CONSTRAINTS wisely otherwise you might accidentally eliminate some needed pairs from test generation. You

should verify the dependencies between constraints to avoid the risk of omitting essential pair combinations.

To better understand the impact of your constraints, pairs not considered valid for tests is provided in the generation summary.

Putting it all together

https://kimputing.atlassian.net/wiki/download/attachments/2180383806/example.csv?version=4&modificationDate=1723453706469&cacheVersion=1&api=v2

22

Messages

The following messages can be generated during AnkrPt Pairwise generation.

101 Cannot add additional criteria once required tests are

defined.

To help manage data, we enforce all positive

criteria created first, followed by negative criteria.

Then required tests, and finally constraints.

Forcing this order simplifies effectively managing

your test criteria.

102 Section <> cannot be defined more than once, please

combine the two sections.

You can only define each section once in the

following order: Criteria, Negative Criteria,

Required Tests, Constraints.

103 Criteria <> is already defined and cannot be defined again. You’ve already defined values for the identified

criteria. Make sure to provide all the valid values

together, and all the negative values together.

104 <> has not yet been defined in your criteria. You can’t refer to a criteria that has not yet been

defined. Check to see that you’ve spelled the

criteria name correctly.

105 <> needs at least two criteria defined. If you’re doing pairwise testing, we need to

generate pairs, meaning two. You need at least

two criteria to test.

106 <> cannot be added multiple times to <> Don’t add the same value multiple times.

Duplicated data causes duplicated tests and the

purpose of pairwise testing is to maximize

coverage while minimizing testing. Extra blanks

are considered extraneous, so we check for this

but don’t automatically remove them; you must

manage your own test data.

107 'CRITERIA' line missing. Every Criteria file must start with CRITERIA as the

first line otherwise it is not considered a Criteria

definition file. This lets us support BOM markers.

108 Criteria not defined. Pairwise needs to have criteria defined in order to

produce tests.

109 All the valid and negative values for each criterion must be

defined together.

You must group all the valid or negative values for

each criterion at the same time, you cannot add

additional valid or negative for a criteria after

already having defined them.

110 Criteria name must be provided, blank is not allowed.

201 <> is already defined as valid criteria for <>. You have already defined the identified criteria as

valid, so trying to include it for negative testing is

a conflict. Make it either positive or negative, not

both.

Code Message Description

23

301 Required tests must include valid criteria. <> cannot be

<>.

Required tests are a quick and easy way to

ensure specific happy path tests. If you want to

test more complex processing, this must be done

with Constraints.

302 The row immediately after REQUIRED TESTS must be a

header row matching the criteria name <>.

Required Tests expect a header row of the criteria

names to ensure you’re entering your Required

Tests in a consistent manner, the order defined in

CRITERIA. But don’t forget the ID column at the

beginning which simplifies Required Test

management, and allows identification of negative

Required Tests.

303 Required Test <> requires at least 3 criteria. All Required Tests must include at least three (3)

criteria otherwise they’re just pairwise tests. And

all pairwise tests are automatically generated.

304 Too many criteria (<>) provided for Required Test."<>". You tried passing more criteria to your Required

Test than are defined in CRITERIA.

305 Required test '<>' conflicts with '<>'. Both Required Tests test the same thing so you

must choose which to use. This often occurs

when one Required Test has fewer criteria than

another but the criteria match. You likely want the

more explicit test but you have to make that

decision.

306 Required test ID must be unique. '<>' already defined. The id of the Required Test must be unique

otherwise we can’t identify which Required Tests

must be reviewed when there are issues.

307 Required test ID must be provided, blank is not allowed. Each Required Test must provide a unique id to

identify Required Tests must be reviewed when

there are issues.

308 Required Test #<> is not valid. Each Required Test must be checked by provided

constraints. If it is not valid, then it cannot be

added.

401 Constraint #<> - Or is not allowed on THEN clauses. Use

isIn or isNotIn if necessary.

THEN is expecting a very specific condition

across criteria so OR is not allowed across

criteria. However, if you want OR for a single

criteria, isIn and isNotIn will support this.

402 Constraint #<> - WHEN can only be defined once. You can only define WHEN once. Did you mean

to use AND or OR instead?

403 Constraint #<> - THEN can only be defined once. THEN can only be defined once for a Constraint.

Did you mean to use AND instead?

407 Constraint #<> - Cannot have a THEN without a WHEN THEN doesn’t logically work without a WHEN.

Add a WHEN to define your Constraint.

408 Constraint #<> - WHEN must be defined before <> Constraints must be entered as WHEN, AND/OR,

THEN, AND.

24

409 Only one value is allowed when using <> IS and ISNOT only allow a single value. ISIN and

ISNOTIN allowed for multiple values.

410 More than one value is required when using <> ISIN and ISNOTIN expect multiple values. Use IS

and ISNOT if you’re comparing against only one

value.

411 Merge your multiple OR statements for criteria <> into a

single ISIN/ISNOTIN statement.

Merging multiple OR statements for the same

criteria into a single statements makes it is easier

to understand and manage the conditions of your

criteria.

412 The provided constraint condition (<>) is invalid for line "

<>".

413 Row (<>) cannot be filled with values because of opposed

constraints.

414 One of the values provided for constraint #<> is empty. Check if your constraint lines doesn’t have any

unnecessary delimiters at the end.

415 Criterion <> is repeated in <> for constraint #<>.

416 Criterion <> exists in both WHEN and THEN part of

constraint #<>

418 Keyword is wrong or missing for line <> Possible keyword are: When, Then, Or, And

501 Error reading file. <> The system failed reading the file identified.

Ensure the file exists at the location identified.

502 Error writing file "<>". Please ensure file is not open,

locked or doesn’t have invalid characters in the filename.

The system failed trying to open or write to the file

identified. Ensure you have access to the file

location, and that the file is not currently open,

locked by another user or process or doesn’t have

invalid characters in filename.

503 File "<>" is using an unsupported file type "<>". Please

contact Kimputing.

The file type "<>" is unsupported. AnkrPt Pairwise

currently only supports 'csv' files. Contact

Kimputing is additional file types are needed.

504 The file <> needs a file extension to be processed. The system needs to know the filetype being

processed and uses the file extension to

determine this. Please ensure the file has a file

extension.

505 <> is an unsupported encoding type. The provided encoding is not supported by Java.

Please try something different.

506 The input and output filenames must be distinct. Providing the same input and output filenames will

result in your input file being overridden. This is

not allowed.

507 Error renaming file additional information provided

508 An input filename must be provided."

25

510 The charset "<>" provided is not valid. The character set provided is not a valid one.

Choose another such as UTF-8 or ISO-8859-1.

511 The additional output "<>" provided is not valid. Valid additional output types are "none", "json", or

"xml".

512 Invalid filename: <> The provided filename is invalid, please correct it.

601 Invalid number of parameters. Parameter 1: input file.

Parameter 2 (optional): output file. File locations can

include paths.

602 Criteria is too complex to generate sustainable tests.

Reconsider the following and try again. <>.

Refer to the AnkrPt Pairwise Testing Data to

understand how to leverage test data. If you need

to override, use -override=yes but this is

unsupported.

699 Pairwise test generation cancelled.

901 Pairwise license key issue, please contact Kimputing at

kimputing.com.

902 Invalid or expired Pairwise license key, please contact

Kimputing at kimputing.com.

903 Pairwise license not found.

904 License file not found. Please review documentation for the location of

the license file.

905 ANKRPT_PROPERTIES is deprecated. Please replace it

with ANKRPT_USERFOLDER which points to AnkrPt user

folder.

additional information provided

26

Resolving Input File Issues

Troubles with input files may occur sometimes. Pairwise allows to use files with custom delimiters, and charsets(java recognizable) - it is

important to check if rules for custom setup are indicated (Running Pairwise).

It is infrequent, but some csv files need to be rewritten to be valid for Pairwise. The easiest way to achieve this goal is to process it with

Excel.

Open a blank workbook.

Change tab to DATA, click on From Text/CSV .

Choose the not-working file, and click Import .

Load data from CSV; click Load .

https://kimputing.atlassian.net/wiki/spaces/Pairwise/pages/2180186789#TestCaseGeneration-_running_pairwise

27

Remove header row from the file, uncheck Header Row

Delete empty sheets(CSV don’t support multiple sheets)

Save file as CSV (Comma delimited)(*.csv)

28

The default delimiter for EXCEL is depended on locale (regional settings) - it may be comma, semicolon, or other, which is set in

operating system settings. To discover where to find information on how to deal with custom delimiters and charset, refer to Running

Pairwise.

https://kimputing.atlassian.net/wiki/spaces/Pairwise/pages/2180186789#TestCaseGeneration-_running_pairwise
https://kimputing.atlassian.net/wiki/spaces/Pairwise/pages/2180186789#TestCaseGeneration-_running_pairwise
https://kimputing.atlassian.net/wiki/spaces/Pairwise/pages/2180186789#TestCaseGeneration-_running_pairwise

29

Effective Test Data Selection

While it is easy to define criteria and generate tests, remember that pairwise is a way to maximize coverage while minimizing tests. It is

crucial to carefully select criteria which adequately covers all desired combinations of values while minimizing the generated tests. Using

values that don’t change test coverage of the system may unnecessarily increase the number of unnecessary cases.

Example 1

For example, 70 values distributed across parameters in two different ways can produce different results:

More doesn’t always mean more

Though it seems counterintuitive, adding more parameters or more values does not always mean more tests. Unfortunately, there is no

formula to determine how many tests will be generated from criteria, the only way to know is to generate. But, you can know the fewest

number of tests that will be generated; just multiply the size of the two largest columns together.

Example 2

For example, 7 parameters in one set, and those same 7 criteria with an additional 25 criteria.

What does this all mean?

That revealing the highest percentage of defects at minimum cost (minimum test cases with maximum test coverage) requires careful

analysis of the values' scope.

10 params with 7 values each (10*7) generates 86 tests (Cartesian > 282 Million)

7 params with 10 values each (7*10) generates 146 tests (Cartesian of 10 Million)

2 parameters of 10 values each and 5 parameters of 2 values each generates 100 tests (Cartesian of 3,200)

those same 7 parameters plus 25 more of 2 values each still generates 100 tests (Cartesian > 3 Billion)

Using values that don’t change test coverage of the system under test significantly increases the number of useless cases. The

better you understand the data, the easier to define parameters that ensure all crucial test coverage parameters are defined. And

that you aren’t generating excessive and unnecessary tests.

It is important to remember that data selection is crucial to minimize testing.

